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518. Hybridization in the Ground State of the Hydrogen 
Molecule-ion. 

By B. F. GRAY, H. 0. PRITCHARD, and F. H. SUMNER. 
Calculations have been made on an automatic machine to determine the 

best representation of the ground state of the hydrogen molecule-ion in terms 
of a linear combination of the ten hydrogen-atom wave functions Is, Zs, 2p, 3s, 
3p, 3d, 4s, 49,  4d, 4f. An error in some earlier calculations has been noted 
and we have found that, if the effective value of 2 is maintained at  unity, the 
best function gives only about 76% of the experimental dissociation energy. 
With the inclusion of a single value of 2 as a variation parameter, i t  is 
possible to get a close approximation to the true dissociation energy. 

A feature of the calculation is that the necessary two-centre integrals 
were, for the most part, evaluated in an analytical fashion by the machine. 

IT was stated by Pritchard and Skinner that in the hydrogen molecule-ion the best 
ls-2p hybrid, without variation in 2 from the value unity, had a dissociation energy almost 
equal to  that obtained by Dickinson; 2 also that the calculated bond length for this state 
was too small and the calculated force constant too large. It has been suggested that this 
surprising result was caused by a lack of orthogonality between the ls-1s and 2P-2P mole- 
cular wave functions used ,3 but unfortunately it was due to the erroneous assumption that 
a particular integral in the energy expression could be equated to zero. In  fact, the 
inclusion of higher quantum states does not lead to a very marked improvement in the 
calculated energy unless one allows a variation in the value of 2. 

The Nature of the Calculation.-We may consider hybridization in the hydrogen molecule-ion 
in two different ways : as the sharing of the electron between a hybridized atomic orbital on 
atom A with a similar orbital on atom B, i.e., we form a molecular orbital by overlapping two 
LCAO atomic wave functions ; or as a linear combination of a number of simple LCAO molecular- 
orbital representations of various states of the system. In this particular case the two methods 
are equivalent, and we use the LCMO description as it is considerably easier to handle. 

Pritchard and Skinner, J . ,  1951, 945. 
Dickinson, J. Chew. Plays., 1933, 1, 317. 
Coulson and Lester, Tram.  Faraday SOC., 1955, 51, 1605. 
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Let e0. . . . #aB, $b,, . . . be the exact Is, Zs, 2p, 3s, 3p, 3d, 4s, 416, 4d, 4f hydrogen-atom 

wave functions centred respectively on atoms A and B. Confining ourselves to 2 states of the 
system, we need only consider, where a choice exists, those wave functions having a maximum 
along the line of centres A-B, as wave functions of other symmetries do not contribute to the 
energy of these 2 states. We define the ten molecular orbitals as : 

@,i = ( 2  + 2Si{)4(+5 + $hi), i = 0, 1, . . . . 9 

and the total wave function for the system as : 
9 9 

Minimizing the energy with respect to the coefficients c i  leads to the tenth-order secular 
determinant : 

lDijl = 1Hij - SijEI = 0 

there are ten eigenvalues of this equation corresponding to the energies of ten 2 states of the 
hydrogen molecule-ion, and ten orthogonal eigenvectors giving the values of the coefficients ci 
associated with each of these levels. 

The elements of lQjl may readily be shown to be 

sij = 2(2 + 2&)-4(2 + 2tjj)4(Eij + Sij) 
and 

where the symbols have the significance : e = the electronic charge, R = the internuclear 
separation, I j  = the ionization potential of a hydrogen atom in state +j, Eij = \Fi#bjd7 for 

Hij = 2(2 + 2&)-'(2 + %jj)-'[(&j + Sij)(lj + e2/R) - e2(Kij + J i j ) ]  

all values of i, j ,  69 = zero (i # j )  or unity (i = j ) ,  Kcj = d7 and Ji j  = \'%dT, 

Y, and yb  being the distance of the electron from nucleus A or B. -Since H is Hermitia;, Hji 
= Hij! but the K integrals are not independent of the order of the subscripts ; the compensation 
is achieved through the I term, I j  being taken with Kij and Ii with Kji. 

It was in the evaluation of the Hij (i # j )  terms that the error arose in the previous work 1 

\$bgH+bjd7 being neglected. Detailed corrections have not been evaluated because we feel 
that the verification of Pauling's bond-strength criterion, based upon the magnitude of the 
angular part of the wave function, is no longer a vital issue in theoretical chemistry. However, 
the extent of the error in the ls-2p case is clear from the results which are presented below. 

The Method of Calculation.-The complete calculation was carried out automatically at a 
series of internuclear distances in the range 2aO-%8a,. At each value of I?, the machine 
evaluated the integrals tip Jij, and Kij and manipulated them to form the required quantities 
Sii and Hii according to the formulae given above. The 165 values of the integrals, together 
with the 55 resulting values each of Sii and Hij were printed out for checking; the machine 
time up to this stage was about 70 minutes. After the determinant had been set up from Sij 
and Hij, the eigenvalues and eigenvectors were determined in a relatively short time by pro- 
grammes that have already been described.4 

The mechanical calculation of the two-centre integrals EQl Jijl and Kij presents an interesting 
and difficult problem. Straightforward numerical integration on the scale involved in this 
problem is out of the question; to obtain two-dimensional integrals to the required accuracy 
would necessitate the evaluation of each function at  several hundreds (or even thousands) of 
points before quadrature formulz could be applied. We 
therefore devised a programme for the machine to perform the calculation in the same way as 
a human calculator would. 

To facilitate transformation into elliptical co-ordinates, the wave functions were recast in 
terms of the variables Y and Y cos 8, i.e. : 

as only the terms FiH+bjdT and /@jH$bidr were considered, the other two 

This would be too time-consuming. 

+i = (numerical const.)(e+N)(polynomial in r, Y cos 0) 
Pritchard and Sumner, Pvoc. Roy. Soc., 1956, A ,  235, 136. 
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A set of storage locations was assigned to each of the ten orbitals, the most complicated one 
(4s) requiring eight 20-digit lines. The orbitals were stored in the following way : one line each 
for the value of the principal quantum number N and for the number of terms in the polynomial ; 
a pair of lines for the numerical coefficient and one line each for each term in the polynomial. 
Terms in the polynomial were stored in the form : 5 digits for the exponent of r ;  6 digits for 
the exponent of r cos 8 ; and 10 digits for the numerical coefficient and its sign. To calculate 
an overlap integral hj, the orbital qbi was identified with atom A and qbj with B ; thus, when the 
transformations u = (ra + rb)/R and v = (r, - rb) /R were used, the exponents were regarded 
as operating on &R(u + v) and iR(1 + uv) for tjbi and on iR(u - v )  and iR(L - uv) for #bj. 
The integral Eij was then given by : 

2x x constant c1 im (gR)w + % +  y+z  (26 + V ) W ( l  + uv)"(u-v)ql - uv)* 
(+R)3(u + v)(u - v)e-autle-Rvladu dv 

the terms (4R)3(u + v ) ( u  - v )  arising from the expression for the volume element in elliptical 
co-ordinates, and t ,  and t2 depend on 2, N,, and N j  ; the factor 2x comes from the integration 
with respect to the angle about the line of centres. 

The maximum value of w, x ,  y, or z occurring in the calculation was 3, and it was thus a 
simple matter to store in the machine, in the same way as the polynomial parts of the orbitals, 
two tables of u-v polynomials, one corresponding to all possible combinations of (w f 1) and 
(y + l), and the other for all possible combinations of x and z. By use of these tables, therefore, 
the integral reduces to a series of terms all of the general form : 

+1 00 

Constant \ \ vmune-Rvtae-Rutldu dv 

At this stage a human calculator would collect together like terms in u and v to produce a single 
polynomial, but this is not a process that is worthwhile in calculation on the machine; he 
would then proceed to integrate the fuhction, first with respect to v between the limits - 1 < v < 1 and then with respect to u from 1 < u < 00 to obtain a power series in the argument R 
which he would then evaluate numerically for the various values of R. Mechanically, however, 
it is much faster to resort to numerical methods one stage earlier. Hence, before the calculation 
of the series of integrals tip J i -  and Kij for any given R was begun, the programme constructed 
a master table of values of the integrals : 

-1 1 

and 

for that particular value of R, for each possible pair of values of t ,  and t,, and for each possible 
value of m and n that would occur in the U-v polynomials; there were ten possible pairs of 
t ,  and t, which determined the number of values of m and n, the maximum values being eight 
in the present calculation. Returning to the calculation of a specific integral Eifi the machine 
would then consider each term of the u-v polynomial in turn, multiplying together its own 
numerical coefficient and the two correct items from the master table of integrals, and adding 
the result to a running total; when every term had been added in, the result was multiplied 
by the correct power of (*I?) and the numerical constant to give the value of &j which was 
stored for future use, and also printed out for checking purposes. 

The other ttvo types of integrals were treated similarly : in the case of the Kij integrals, it 
was only necessary to reduce w and (w + 1) [the exponents of (4R) and (u + v)] by one [i.e., 
to divide by r, = @2(u + v)] before repeating the calculation; for the J i j  integrals, both 
orbitals belong to the same atom (A) so that only terms in (u + v) and (1 + uv) occur, and 
dividing through by r, = +R(u - v )  removes the (u - v) term contributed by the volume 
element. In  other words, Jij and Kij are treated only as special cases of the &j integrals. 

This scheme worked very well for the simpler orbitals, but in the inter-Cquantum level Eij 
integrals, values as large as 50 were printed out ! This was found to be due to a very rapid 
cancellation of significant digits in evaluation of the higher v integrals, so that some of the 
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iiumbers used were meaningless. Without carrying double- or triple-length numbers, it is 
virtually impossible to overcome this difficulty, so it was decided to evaluate these particular 
integrals numerically. This was done using a 16-point Gaussian integration in the range 
- 1 < v < 1, which gave answers of very high precision. 

Even with this modification, errors occurred in the calculation of ,J3d3d, Jcd4d, and probably 
also in J3&d. Since the same routine was used to calculate all 165 integrals, this could only 
be due to a chance cancellation of significant digits in the final answer; this conclusion was 
proved by putting all the integrals in the master table equal to unity when the correct value 
(128R-1) for J3d3d was obtained. The error in these J integrals (-10%) was not sufficient to 
affect significantly the calculated ground-state energy of the system, the only effect being to 
upset the hybridization coefficients. Consequently, we did not undertake the immense task 
of searching for the cancellation and correcting it, but instead we confine our detailed discussion 
to the effect of mixing s- and $-orbitals only. 

RESULTS 
The dissociatioii energies and bond lengths for a iiuinber of orbital combinations 

together with the corresponding values of ci are given in the Table. These values are for 
Z = 1 and it is obvious that the inclusion of still higher bound states* will never lead to 
the correct dissociation energy of 0.205 a.u. or bond length of Z-Oa,,. The reason is that 
our wave function does not obey the correct boundary conditions : it should vanish at  ~0 

as e-2T whereas the simple 2 = 1 function vanishes roughly as e+; this causes the electron 
cloud to  be on the average too far away from the two nuclei and the interaction energy 
will always , therefore, be too small. 

The most interesting conclusion to Be drawn from these results is that s-orbitals are 
more important than $-orbitals of the same quantum level. In particular this appears 
in the 2-quantum level where the addition of 2s to the 1s wave function leads to a significant 
improvement in the binding energy, but the subsequent addition of 2P-character to the 
wave function has an almost insignificant effect. (The same is qualitatively true of d- 
andf-orbitals : the coefficients of 4d and 4J are successively less than 49, and their inclusion 
in the total wave function causes only a minute improvement in the binding energy.) 

Approxi- 
mation 

no. 
1 
2 
3 
4 
5 
6 
7 

Orbital coefficients 

is 
1~0000 
1.0076 
0.9975 
1.0096 
0.9371 
1-0104 
0.9926 

3s 3P - - 2s 2P 
- - 

0.1014 - - - 
0.1015 0.0157 - - 
0.1061 - 0,0447 - 
0.1112 0.0398 0.0466 -0*0210 
0.1078 - 0.0463 - 
0.1125 0.0350 0.0614 0.0121 

\ re D, 
4s 4p (in atomic units) 
- - 2.493 0.1297 

2.394 0.1430 - - 2.406 0.1432 
- - 2.368 0.1464 
- - 2.378 0.1471 

0.0269 - 2.357 0.1478 

- - 

0.0309 -0.0266 3.368 0.1487 
Actual values 2.00 0.205 

The values of the coefficients all refer to a distance of 2.4a0, since the character of the hybrid wave 
function does not vary significantly with small changes in distance. That some of the coefficients are 
greater than unity arises because they are associated with the series of orbitals <Da which are not 
orthogonal to each other, so that the cross-products involving crcj do not vanish. 

In principle, the energies of nine orthogonal excited 2 states can be obtained, but 
owing to the poorness of the above approximation they were not fully investigated. They 
are all highly unstable with respect to a hydrogen atoin in its ground state, the first being 
built mainly from 2sJ the second from 2$, and so on. 

The energy of the ground state is very readily improved by allowing a variation in 2 
in the wave functions (but not in the actual charges of the two nuclei). A calculation 
similar to approximation no. 5 carried out at R = %0a, and 2 = 1-25 gave orbital coeffi- 
cients similar to those in the Table and a dissociation energy of 0.2004 a.u. ; this is almost 
the same as the energy (0.2016 a.u.) obtained by Dickinson by considering only 1s and 2p, 

* The discrete hydrogen-atom wave functions do not form a complete set and the correct description 
will only be attained if continuum wave functions are i n ~ l u d e d . ~  This is inconvenient, both practically 
and conceptually. 

6 Cf. Shull and Lowdin, J. C k e m  Uhys., 1965, 23, 1362. 
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each orbital having a separate value of 2. We see that the physical interpretation of 
Dickinson’s wave function in terms of “ polarization ” is not very convincing, (a) because 
the addition of 2$ to the 1s wave function is no more effective than the addition of 2s, and 
(b )  because if we take enough orbitals, and vary 2 from the chosen value of 1.25, we can 
obviously improve Dickinson’s answer without inventing two values of 2. The variation 
of 2 tends to rectify the fact that the wave function does not obey the boundary conditions 
at infinity by bringing the electron a little closer to the nuclei; in effect, what Dickinson 
has done is to choose a very effective non-linear combination of 1s and 2$ orbitals which 
gives a good representation of the energy with a minimum of computational labour. 

One of us (B. F. G.)  was in receipt of a D.S.I.R. maintenance grant when this work was 
carried out. 
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